Как определить площадь четырехугольника

Единицы измерения

Применяются системные и внесистемные единицы измерения

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) — сечения балки в строительной механике, в квадратных метрах (м²) — квартиры или дома, в квадратных километрах (км²) — территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

Формулы площади выпуклого четырехугольника

  1. Формула площади четырехугольника по длине диагоналей и углу между ними
    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    S =  1 1 2 sin 
    2

    где S — площадь четырехугольника,1, 2 — длины диагоналей четырехугольника, — угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружностиS =  · 

  3. Формула площади четырехугольника по длине сторон и значению противоположных угловS = √()()()() —  cos2

    где S — площадь четырехугольника,, , , — длины сторон четырехугольника,

     =   +  +  +    — полупериметр четырехугольника,
    2
     =   +   — полусумма двух противоположных углов четырехугольника.
    2
  4. Формула площади четырехугольника, вокруг которого можно описать окружностьS = √()()()()

Основные способы

Существует три основных способа определения площадей:

  • аналитический;
  • графический;
  • механический.

определение площади

Для графического способа используются данные измерений на плане и карте.

Такой способ чаще всего используется при отсутствии информации полевых измерений.

При механическом способе площадь определяется по плану с помощью специального устройства — планиметра.

Иногда используется комбинированный способ определения площади. Например, общая площадь участка определяется по координатам характерных точек аналитическим способом, а площади внутренних участков определяются по плану с помощью графического или механического методов.

Эти три метода имеют различные показатели точности.

Наиболее точным является аналитический метод. На точность этого метода влияют только погрешности полевых измерений.

Точности других методов, использующих топографическую информацию с планов, зависят еще и от погрешностей приборов, качества плана, масштаба, деформации бумаги.

Аналитический способ

Аналитический способ позволяет по координатам характерных точек границ участка определить его площадь. При этом используются формулы аналитической геометрии.

В соответствии с ними площадь многоугольника S может быть определена по формуле:

S= 0,5*∑(Xi*(Yi+1-Yi-1), где:

  • Xi и Yi — координаты i-той характерной точки участка, имеющего вид многоугольника;
  • i — порядковый номер характерной точки ЗУ. Этот параметр меняется от 1 до n;
  • n — число характерных точек.

Если участок имеет четырехугольную форму, то, в общем случае, для него расчет площади производится по приведенной выше формуле с учетом того, что n=4.

Если участок имеет форму трапеции и известны его стороны, то площадь такого участка можно определить по формуле:

Sт=0,5*(a+b)*h, где:

  • a и b — основания фигуры;
  • h – высота трапеции.

При расчете четырехугольника неправильной формы, когда известны размеры его сторон, вначале определяют величину полупериметра p:

р=0,5(а+B+c+d), где:

a,b,c,d — величины сторон.

Тогда площадь участка Sу будет равна:

Sy=√(p-a)(p-b)(p-c)(p-d).

В некоторых случаях, когда имеется много точек поворота, аналитический расчет площади участка производится с использованием данных об углах азимута.

При этом по контуру границ участка производится замер азимута каждой характерной точки. Также определяется расстояние от одной характерной точки до следующей за ней точки. Вся эта информация в дальнейшем вводится в ЭВМ, которая по специальной программе производит расчет площади ЗУ.

Графический метод

При расчете площади участка графическим методом чаще всего изображенный на плане участок сложной формы делят на участки элементарного вида (треугольники, прямоугольники, трапеции), затем вычисляют и суммируют площади этих фигур.

Точность графического метода зависит от точности графического измерения на плане. Известно, что точность измерения с помощью циркуля постоянна и равна 0,1 мм. Поэтому относительная ошибка при измерении коротких линий больше, чем при измерении длинных линий. В связи с этим желательно, чтобы простые фигуры были больших размеров и с близкими по размерам основаниями и высотами.

Такой метод удобен в случае, когда имеется небольшое количество характерных точек. В противном случае целесообразнее определять площадь участка по координатам точек, измеренных на плане.

В некоторых случаях участки имеют криволинейную форму, которую трудно аппроксимировать простыми фигурами. В таких случаях могут использоваться палетки.

Палетка представляет собой прозрачный лист, на который нанесены деления. Этот лист накладывается на план участка. Сосчитав количество делений, входящих в контур участка, и определив площадь одного деления с учетом масштаба, можно оценить площадь участка.

Недостаток такого графического метода состоит в том, что количество неполных квадратов приходится оценивать на глаз. В результате этого ухудшается точность данного метода.

Механический способ

Механический способ используется в тех случаях, когда по плану необходимо оценить площадь большого участка со сложными границами. Для осуществления этого метода используются планиметры.

Планиметр представляет собой прибор, который позволяет определить площадь плоской фигуры путем обвода ее контура. Он состоит из двух рычагов и каретки со счетным механизмом. На полюсном рычаге имеется игла, которая втыкается в план и является полюсом. Вокруг полюса по контуру участка движется обводной шпиль. Точность метода зависит от размеров участка и свойств плана.

Как посчитать площадь комнаты в квадратных метрах

Необходимость в расчете площади возникает зачастую только во время ремонтных работ, строительства или при смене мебели. Практически все строительные материалы (например напольное покрытие) исчисляется в квадратных метрах

Для правильного расчета количества материала, важно знать площадь пола. Зная ширину и длину комнаты, найти площадь не вызовет никаких сложностей

Измерения

Перед тем как измерить комнату в квадратных метрах, необходим минимальный набор предметов:

На бумаге необходимо сделать подробный план помещения. Каждая стена должна быть измерена с использованием рулетки.

Внимание! Очень важно делать измерения на уровне пола, ведь бывают случаи (особенно в старых домах), когда стены немного завалены в одну из сторон. Так как происходит измерение пола, необходимо измерять с максимальным прилеганием к стенам

Вторым этапом является проставление полученных измерений на плане. Лучше всего сразу делать это в метрах, но точность каждого замера должна быть до 1 сантиметра. Это необходимо для того, чтобы при выборе необходимого количества материалов, удалось максимально точно подобрать метраж требуемого материала. Рулонные напольные покрытия продаются в погонных метрах.

Округлять можно только в случае небольшого увеличения, чтобы в случае непредвиденных обстоятельство, было достаточное количество материала.

Как высчитать квадратуру комнаты

Чтобы понять, как узнать общую площадь комнаты, необходимо воспользоваться простой формулой и перемножить показания длины на ширину. Как показано на рисунке длинная стена имеет длину в 7 метров а противоположная только 4. Выходит площадь пола будет равна 28 м2. Именно таким образом и находят квадратуру. Обязательно требуется помнить о небольшом запасе, который потребуется для подгонки и подрезки, причем чем сложнее будет вариант укладки, тем больше потребуется брать запас.

Зачастую комнаты не имеют ровной квадратной или прямоугольной формы.Поэтому, перед тем как узнать площадь комнаты в квадратных метрах, необходимо просто разбить комнату на несколько простых фигур (квадраты и прямоугольники) и после считают общую квадратуру. Так например для комнаты у которой форма буквы Г, достаточно разбить ее на 2 прямоугольника, отдельно посчитать площадь, а потом сложить.

Выглядит это все следующим образом:

  • вычисляем квадратуру большого прямоугольника: 5 умножаем на 4,35 и получаем 21,75 квадратных метров;
  • теперь по тому же принципу второй: 2,5 на 2,65 и получаем 6,625 квадратов;
  • далее суммируем общий результат 6,625 + 21,75 и получаем площадь комнаты в размере 28,375 квадратных метров.

Имея на руках полученный точный результат, можно немного округлить его в большую сторону и учитывать 28,4 квадратных метра.

В том случае, если комната имеет участок со срезанной стеной, как показано на картинке, тогда необходимо нарисовать прямоугольник таким образом, чтобы косая делила его на 2 треугольника. Тогда опять получается помещение по форме буквы Г. Далее можно вычислить площадь, по выше представленному методу.

Необходимо будет найти площадь трех прямоугольников. Недостающий участок – половина маленького прямоугольника. Достаточно будет просто найти его площадь и разделить на 2, после чего прибавить к остальным размерам.

Итак, для примера можно использовать следующие данные:

  • большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Чтобы было проще, возьмем 3,38 м²;
  • средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м². Опять произведем округление до 0,67 м²;
  • самый маленький прямоугольник: 0,57 м *0,57 м = 0,3249 м2, доводим до 0,33 м²;
  • теперь осталось только сложить получившиеся значения и прибавить ½ маленького прямоугольника: 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Это наиболее удобная методика, которой может воспользоваться любой желающий. Достаточно только разбивать сложную фигуру на несколько простых. Несмотря на то, что измерений будет больше, такой метод не требует больших усилий и временных потерь, а все вычисления можно сделать буквально на коленке.

Площадь квадрата

Из известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.

Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:

Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– ) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.

Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:

В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:

Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.

Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:

Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:

В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине

Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это . Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».

Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что

Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:

Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):

из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.

Задание. Найдите площадь квадрата, если его сторона равна

Задание. Площадь квадрата равна 25. Найдите длину его стороны.

Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:

Его , для его решения надо просто извлечь квадратный корень из правой части:

Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.

Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.

Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:

По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:

Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.

Ответ: 16 см2.

Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2

Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высотеПлощадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

    S =  1 a · h
    2
  2. Формула площади треугольника по трем сторонам

  3. Формула площади треугольника по двум сторонам и углу между нимиПлощадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S =  1 a · b · sin γ
    2
  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

    S =  a · b · с
    4R
  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружностиПлощадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    S = p · r

    где S – площадь треугольника,a, b, c – длины сторон треугольника,h – высота треугольника,γ – угол между сторонами a и b,r – радиус вписанной окружности, R – радиус описанной окружности,

    p =  a + b + c   – полупериметр треугольника.
    2

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ФОРМЫ

В этом и в следующем номере мы расскажем вам о программах и заданиях, в которых ребята знакомятся с двумя основными принципами формообразования: геометрическим и бионическим.

Сегодняшняя статья посвящена заданиям курсов «Геометрические формы» и «Знаки творчества», где композиции создаются на основе геометрических фигур и производных от них элементов.

В последовательно выстроенной системе упражнений и заданий программы «Геометрические формы» (2-й год обучения в Дизайн-центре) за основу берутся простейшие геометрические фигуры (круг, треугольник, квадрат): дети учатся видеть эти формы в окружающей среде, использовать их в своих композициях и создавать более сложные построения на их основе.

Начинаем с исследования линий, проведенных на листе бумаги: ломаных, кривых, округлых – пересекающихся друг с другом и образующих замкнутые контуры геометрических фигур. Далее изучаем сами простейшие фигуры, исследуем их декоративные, конструктивные и комбинаторные свойства и особенности. Интересно наблюдать с каким энтузиазмом наши ученики экспериментируют и изобретают всевозможные варианты деления

и построения квадратов, треугольников и кругов. Такие задания – как игра с калейдоскопом, где мы находим бесконечное количество новых комбинаций и оригинальных выразительных возможностей.

Этому интересу и неиссякаемой фантазии способствуют и разнообразные материалы, с которыми мы работаем: маркеры и фломастеры, гелевые ручки и цветные карандаши, бумага различных форматов и цветов, самоклеющаяся плёнка и обои, деревянные палочки и пластиковые трубочки, шерстяные нитки и всевозможные верёвочки, пуговицы и другие мелкие предметы. В последующих заданиях дети учатся выделять простейшие геометрические формы, лежащие в основе более сложных, в том числе природных форм, или наоборот, получать сложные объекты, составляя их из простых геометрических элементов, например, фигур одного типа. Применяя технику мозаики, геометрические сетки, текстуры и паттерны, создаём мозаичные изображения животных, стилизованные портреты, натюрморты и архитектурные фантазии.

Пропедевтические упражнения, чередующиеся с творческими заданиями, закладывают основы композиционного мышления, развивают внимание и исследовательские способности детей, пространственное воображение, чувство цвета и гармонии, прививают культуру работы с различными средствами выразительности, учат добиваться высокого качества работ. Познакомившись с основами геометрического формообразования, мы используем его впоследствии как инструмент во многих заданиях и программах на более. старших курсах, в частности, в программе «Знаки творчества»

старших курсах, в частности, в программе «Знаки творчества».

Образовательные программы: «Геометрические формы», 2-й год обучения в Детском дизайн-центре, «Знаки творчества», 4-й год обучения в Детском дизайн-центре.

Автор программ: Галина Корнева.

Коллективный проект: «Новогодняя ёлка»

Возраст: 9-12 лет.

Как найти площадь неправильной фигуры | Сделай все сам

В школьном курсе геометрии ученики в основном считают площади положительных многоугольников. Между тем, для решения множества фактических задач неоднократно доводится иметь дело с неправильными геометрическими фигурами.

С этой задачей человек сталкивается и при определении размеров дачного участка либо придомовой территории, и при расчете числа ткани для шитья, и еще во многих случаях.

Высчитать площадь неправильной фигуры дозволено несколькими методами.

Вам понадобится

  • – неправильная геометрическая фигура;
  • – измерительные инструменты;
  • – прозрачный пластик;
  • – линейка;
  • – угольник;
  • – шариковая ручка.

Инструкция

1. Разглядите геометрическую фигуру и определите, какие ее параметры вам вестимы. Это могут быть длины сторон либо углы. В зависимости от заданных параметров и выберите метод определения площади. Скажем, поделите ее на несколько фигур, формулы вычисления площади которых вы знаете.

Один из самых распространенных способов — провести диагонали из одного угла ко каждым остальным вершинам. В этом случае вам необходимо знать формулу вычисления площади произвольного треугольника. Но никто не воспрещает поделить заданную фигуру и на другие многоугольники.

Скажем, при расчете площади пола в комнате с нишей комфортнее поделить неправильную фигуру на два прямоугольника либо квадрата.

2. Для определения площади не слишком огромный детали дозволено воспользуйтесь палеткой. Ее дозволено сделать самому. Отрежьте прямоугольный кусок всякого прозрачного пластика.

Поделите его на квадраты, площадь которых вам вестима — скажем, 1х1 либо 0,5х0,5 см. Линейка и угольник обязаны быть точными. Наложите палетку на деталь. Сосчитайте полные квадратики, после этого — неполные.

Роль палетки будет исполнять сетка из квадратов со стороной 1х1 м, начерченная на земле либо подмеченная колышками с протянутыми между ними шнурами. Дозволено ограничиться и разметкой территории на полосы. .

3. С большими площадями дозволено поступить и напротив. Возьмите максимально точный план участка либо придомовой территории. Определите масштаб. Воспользуйтесь одним из предложенных методов. После этого полученное число квадратных сантиметров переведите в надобный масштаб.

Перед тем как начинать ремонт пола в доме, нужно узнать всеобщую площадь , дабы верно рассчитать число материала. Несложная, казалось бы, задача на деле может вызвать много сложностей. Дабы положительно обнаружить площадьпола , вам нужно знать некоторые нюансы измерительной науки.

Вам понадобится

  • – рулетка;
  • – электронный дальномер;
  • – лист бумаги и карандаш;
  • – калькулятор.

Как рассчитать площадь фигуры неправильной формы?

Пример многоугольника

Данный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.

Смотрим на картинку — площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE. Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно — площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.

А это довольно удобно, например, при бытовом ремонте — длины-то всяко проще померять, чем углы.

Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры. Для проверки также выводятся площади обсчитанных им треугольников. В поле «Ошибка» выводится вершина, которую не удалось сопоставить ни одному треугольнику (если, например, введены еще не все диагонали).

По умолчанию в таблицу введены стороны и диагонали многоугольника на картинке, что легко исправить, нажав кнопку «Очистить таблицу».

Стороны и диагонали

Название стороны или диагонали

Для разделения полей можно использовать один из этих символов: Tab, «;» или «,» Пример: ? EFGHIJKLMNOPQRSTUVWXYZ ?;50.5

Точность вычисления

Знаков после запятой: 2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector