Площадь сечения проводов. формулы и таблицы
Содержание:
Как определить сечение кабеля по диаметру, формула, таблица
Самым главным при монтаже электропроводки — это подобрать качественный кабель, ведь всегда с легкостью можно заменить розетку, или выключатель, а заменить прогоревший кабель будет затруднительно, не говоря уже о том, какие могут быть последствия от этого. Очень часто сечение кабеля отличается от заявленного производителем, ведь уменьшение сечения позволяет недобросовестным производителям экономить на самой дорогой составляющей — меди. Чтоб не стать жертвой обмана желательно перед покупкой кабеля измерить его сечение самому, а как определить сечение кабеля по диаметру тремя простыми способами мы расскажем в этой статье.
Способ №1 — с помощью штангенциркуля или микрометра
С помощью штангенциркуля или микрометра замеряется диаметр зачищенной от изоляции токопроводящей жилы кабеля. Замер желательно произвести на нескольких участках жилы, а также на всех жилах кабеля, и записать наименьшие показатели. Если производить замеры с помощью микрометра, то замер нужно производить на ровном участке жилы, так показатели будут более точными.
- Как известно из школьного курса математики площадь круга (а в нашем случае это будет площадь сечения кабеля) исчисляется по формуле S=πR² и если эту формулу упростить делением числа π на 4, то в результате получим формулу по которой можно определить сечение кабеля по диаметру:
- По этой формуле можно с легкостью посчитать сечение токопроводящей жилы, например: при измерении диаметра токопроводящей жилы мы получили значение 1,6 мм, умножаем 0,785*1,6*1,6=4,009466 мм², получается это кабель сечением 4 квадрата.
Способ №2 — с помощью линейки
Что делать если под рукой нет ни штангенциркуля, или, том более микрометра, как определить сечение кабеля по диаметру без этих инструментов? На помощь придет старый и проверенный способ измерения с помощью линейки и карандаша.
Принцип измерения с помощью данного способа состоит в следующем: очищенная жила наматывается на карандаш, как показано на рисунке ниже. Минимальное количество витков должно быть 15-20, но тут тоже нужно исходить из толщины проводника, если он слишком тонкий то желательно намотать витков побольше.
Чтоб уменьшить погрешность измерения, витки нужно наматывать как можно плотнее. Далее с помощью линейки измеряем длину намотанного провода и разделяем на количество витков, получаем диаметр жилы, все просто.
С помощью известной уже нам формулы определяем сечение кабеля по диаметру. Для наглядности приведем пример: допустим мы намотали 20 витков провода, и получили результат 19,6 мм, делим это число на количество витков 20, и получаем диаметр 0,98 мм. С помощью формулы рассчитываем: 0,785*0,98*0,98=0,753914 мм², округляем, и получаем 0,75 квадратов.
Недостаток данного способа определения сечение кабеля по диаметру в том, что с его помощью будет затруднительно намотать провод с большим сечением, а вот для малых сечений этот метод наоборот даст более точный результат. К тому же нужно будет наверняка купить для проверки кусок провода, ведь никакой продавец не позволит проводить у себя такие эксперименты.
Способ №3 — с помощью таблицы
Самый простой способ определить сечение кабеля по диаметру, но все таки потребуется измерительный инструмент штангенциркуль, или микрометр. Измеряем толщину диаметра жилы, и с помощью таблицы определяем сечение.
Диаметр проводника, мм | Сечение кабеля, мм.кв. |
0,80 | 0,5 |
0,98 | 0,75 |
1,13 | 1,0 |
1,38 | 1,5 |
1,60 | 2,0 |
1,78 | 2,5 |
2,26 | 4,0 |
2,76 | 6,0 |
3,57 | 10,0 |
4,51 | 16,0 |
5,64 | 25,0 |
6,68 | 35,0 |
7,98 | 50,0 |
9,44 | 70,0 |
11,00 | 95,0 |
12,36 | 120,0 |
13,82 | 150,0 |
15,35 | 185,0 |
17,48 | 240,0 |
19,54 | 300,0 |
22,57 | 400,0 |
В заключении нужно сказать, что важно также обращать внимание на состав токопроводящей жилы, чаще всего подделывают провода и кабеля с медной жилой. Покупайте кабельную продукцию у проверенного продавца
Наш магазин реализует только качественную, сертифицированную продукцию проверенных отечественных производителей.
Если хотите задать вопрос связанный с вопросом выбора кабельной продукции, то Вы всегда можете проконсультироваться с нашими консультантами, достаточно всего лишь связаться с нами через форму обратной связи, либо заказать обратный звонок.
Особенности электрических проводов
При всём многообразии кабельной продукции и огромном выборе проводов для прокладки электрических сетей существуют правила подбора. Не обязательно учить наизусть все марки кабелей и проводов, нужно уметь читать и расшифровывать их маркировку. Для начала стоит выяснить различие между проводом и кабелем.
Провод – проводник, используемый для соединения двух участков цепи. Может иметь одну или несколько токопроводящих жил. Жилы могут быть:
- голые;
- изолированные;
- одножильные;
- многожильные.
Голые линии применяются там, где прикосновение к токоведущим жилам невозможно. В большинстве случаев они используются для воздушных линий электропередач.
Изоляционное покрытие применяется однослойное или двухслойное. Провода, имеющие два или три проводника в двойной изоляции, путают с кабелем. Путаница происходит из-за того, что изоляция покрывает каждую жилу, а снаружи выполнено общее полимерное или иное покрытие. Такие проводники нашли применение внутри электрических устройств, щитов или шкафов. В быту они скрыты в стене или проложены в специальных каналах.
Изолированная продукция используется повсеместно. В зависимости от степени электробезопасности помещения и места прокладки, выбирается класс изоляции.
Многожильные проводники используются там, где необходимы изгибы малого радиуса при прокладке сложных трасс, где не могут пройти одножильные аналоги. Такой тип тоководов удобно монтировать в кабельных каналах. Одножильные провода в таких условиях изгибать труднее, нужно прикладывать силу, и существует опасность повреждения жилы.
К сведению. Маркировка АППВ 3*2,5 обозначает провод с алюминиевыми жилами, поливинилхлоридной изоляцией, плоский, имеющий разделительное основание. Расшифровку маркировки уточняют в справочной литературе.
По строению кабель – это сколько-то жил, имеющих индивидуальную изоляцию, помещённых в защитный внешний слой из диэлектрического материала. Пространство между сердечниками и оболочкой, для предотвращения слипания, заполняется бумажными лентами, пластмассовыми нитями или кабельной пряжей. Дополнительно изделие может быть усилено бронёй из лент или стальной оплёткой для защиты от механических повреждений.
Таблица соответствия диаметров проводов и площади их сечения
Определение кабельного или проводного сечения по стандартной физической формуле относится к числу достаточно трудоемких и сложных процессов, не гарантирующих получение максимально точной результативности, поэтому целесообразно использовать с этой целью специальные, уже готовые табличные данные.
Диаметр кабельной жилы | Показатели сечения | Проводники с жилой медного типа | ||
Мощность в условиях сети 220 В | Ток | Мощность в условиях сети 380 В | ||
1,12 мм | 1,0 мм2 | 3,0 кВт | 14 А | 5,3 кВт |
1,38 мм | 1,5 мм2 | 3,3 кВт | 15 А | 5,7 кВт |
1,59 мм | 2,0 мм2 | 4,1 кВт | 19 А | 7,2 кВт |
1,78 мм | 2,5 мм2 | 4,6 кВт | 21 А | 7,9 кВт |
2,26 мм | 4,0 мм2 | 5,9 кВт | 27 А | 10,0 кВт |
2,76 мм | 6,0 мм2 | 7,7 кВт | 34 А | 12,0 кВт |
3,57 мм | 10,0 мм2 | 11,0 кВт | 50 А | 19,0 кВт |
4,51 мм | 16,0 мм2 | 17,0 кВт | 80 А | 30,0 кВт |
5,64 мм | 25,0 мм2 | 22,0 кВт | 100 А | 38,0 кВт |
6,68 мм | 35,0 мм2 | 29,0 кВт | 135 А | 51,0 кВт |
Ядерная физика
Основная статья: Ядерное эффективное сечение
Эффективное поперечное сечение широко используется в ядерной и нейтронной физике для выражения вероятности протекания определённой ядерной реакции при столкновении двух частиц.
Типичный радиус атомного ядра составляет порядка 10−14м, то есть поперечное сечение ядра — порядка 10−28м². Можно ожидать, что сечения взаимодействий частиц с ядром должны иметь примерно такую величину. Она получила своё собственное наименование — барн, — и обычно используется как единица измерения сечения ядерных реакций. Однако, на самом деле, сечения реакций могут изменяться в очень широких пределах.
Если радиус ядра больше, чем длина волны де Бройля налетающей частицы (большие энергии), то максимальное сечение определяется геометрическими размерами ядра (πR²). В области малых энергий максимальное сечение определяется, наоборот, длиной волны де Бройля. Реальные значения сечений могут быть намного меньше максимальных, они зависят от энергии налетающих частиц, типа реакции, ориентации спинов частиц и т. п.
Нейтронные сечения ядер
Сечения рассеяния (сплошные линии) и захвата (точечные) нейтрона для ядер разных элементов
Полное сечение реакции с нейтроном и сечение деления для U-235 и Pu-239
Взаимодействие ядра атома и нейтрона является краеугольным камнем ядерных технологий. Вероятность взаимодействия ядра и нейтрона именуют полным сечением. Процесс взаимодействия может происходить по нескольким схемам. Вероятность каждой конкретной схемы (ее сечение взаимодействия) зависит от состава ядра и кинетической энергии нейтрона:
- Упругое рассеяние, при котором ядро сохраняет целостность. Нейтрон и ядро изменяют свою кинетическую энергию в соответствии с законами механики. Вероятность такого сценария характеризует сечение рассеяния.
- Ядерная реакция, при которой ядро поглощает нейтрон (нейтронный захват). Ее вероятность характеризуется сечением захвата. Существует множество сценариев последствий захвата нейтрона, каждый из которых также может характеризоваться своим сечением. Например, некоторые ядра после захвата становятся нестабильны и распадаются. Такую вероятность характеризуют сечением деления.
- Неупругое рассеяние, при которой ядро разваливается под ударом нейтрона.
Элемент | нейтронное сечение, барн | |||
---|---|---|---|---|
поглощения | рассеяния | |||
тепловые нейтроны | быстрые нейтроны | тепловые нейтроны | быстрые нейтроны | |
C | 0,0034 | 0,0001 | 4,75 | 0,619 |
Na | 0,515 | 0,002 | 4 | 0,437 |
Fe | 2,55 | 0,010 | 10,9 | 0,85 |
Zr | 0,185 | 0,023 | 6,40 | 0,97 |
238U | 2,7 | 0,331 | 8,9 | 0,664 |
Как произвести расчет?
Рассчитываем сечение
Определение сечения трубы является несложной геометрической задачей. Для этого следует для начала воспользоваться формулой площади круга:
Sн= π Rн^2, (1)
где Rн – наружный радиус трубы, равен половине наружного диаметра.
Таким образом, мы определим площадь круга, образованного наружным диаметром.
Теперь определим площадь круга, образованного внутренним диаметром трубы. Для этого необходимо определить внутренний радиус, который определяется по следующей формуле:
Rвн=Rн-?, (2)
где? – толщина стенки трубы.
Определив площадь внутреннего круга Sве аналогично формуле (1), рассчитаем площадь сечения по формуле:
Sсеч=Sн?-S?вн.
Все действия можно свести в упрощенную формулу определения площади сечения:
Sсеч=? (?D_н/2?^2- ??/2?^2).
В качестве примера определим площадь сечения, внешний диаметр которого равен 1 метру, а толщина стенки – 10 мм.
Sсеч=3,14 (?1/2?^2- ?0,01/2?^2)=0,75 м^2.
Производим расчет площади внешней поверхности
Такой расчет также является геометрической задаче. Если развернуть трубу, то получится прямоугольник. Его ширина равна длине окружности внешней стенки трубы, а длина – длине.
Тогда площадь развертки трубы будет вычисляться по формуле:
S=? D_н L_тр,
где Lтр – длина трубы.
В качестве примера рассчитаем площадь поверхности под окраску теплотрассы, длина которой составляет 10 км, а внешний диаметр – 1 метр.
S=3,13 1 10000=31416 м^2.
Если говорить о количестве теплоизоляционного материала, то при подсчете следует учесть толщину слоя минеральной ваты.
Тогда формула примет вид:
S=? ?(D?_н+?2 ??_(в)) L_тр,
где?_в-толщина слоя минеральной ваты.
В действительности материала для теплоизоляции будет потрачено меньше, так как он накладывается в внахлест.
Производим расчет площади внутренней поверхности
Для начала необходимо определиться, для чего такой расчет следует проводить. Чаще всего он нужен при расчете гидродинамики движения теплоносителя в трубе. Внутренняя поверхность трубы является местом, где вода при её движении соприкасается с трубой. Таким образом, возникает гидравлическое сопротивление, которое необходимо учитывать при расчете сети коммуникации.
Необходимо помнить ряд следующих нюансов:
- При увеличении диаметра трубопровода снижается гидравлическое трение теплоносителя о стенки труб. Поэтому при большом диаметре и длине водопровода гидравлическое сопротивление трубы потоку воды можно не учитывать.
- Качество поверхности, её шероховатость, оказывает большое значение на величину гидравлического сопротивления. При этом такое влияние сильнее, чем зависимость сопротивления от площади поверхности внутренней стенки трубопровода. Так, полиэтиленовая труба обладает меньшей шероховатостью нежели ржавая металлическая. Поэтому величина гидравлического сопротивления в пластиковой трубе будет меньшей.
- Если в качестве материала для изготовления трубы применяется неоцинкованная сталь, то площадь поверхности внутренней стенки меняется во времени. На стенках такого трубопровода постепенно откладываются ржавчина и минеральные отложения. Как результат – происходит уменьшение внутреннего диаметра трубы и увеличение величины гидравлического сопротивления. Такой эффект необходимо учитывать при проектировании водопровода из стали.
S=? ?(D?_н-2 ?) L_тр.
В качестве примера рассчитаем трубу, диаметр которой равен одному метру, а толщина стенки – 10 мм.
S=3,14 (1-2 0,01) 10000=30788 м^2.
Заключение
Итак, приведенные в статье расчеты не являются сложными и доступны любому человеку. Они пригодятся при проектировании собственного трубопровода. Чтобы возведенная коммуникация соответствовала ожиданиям о её работоспособности, предложенные расчеты следует производить в обязательном порядке.
Сегодня нам предстоит небольшой экскурс в школьные программы геометрии и физики. Мы вспомним, как вычисляется площадь поперечного сечения трубы и ее внутренний объем. Кроме того, нам предстоит выяснить, как изменения диаметра трубопровода действуют на давление в потоке жидкости. Итак, в путь.
На фото — водогазопроводные трубы. Нам предстоит научиться вычислять их внутреннее сечение.
Примеры проведения расчетов
Существенную помощь в разборе принципов вычислений и последовательности действий при выполнении расчетов окажут конкретные примеры, с которыми стоит ознакомиться заинтересованным посетителям.
Расчет объема требуемого теплоносителя
Для загородного дома временного проживания нужно рассчитать объем закупаемого пропиленгликоля – теплоносителя не застывающего при температурах до -30°C. Система отопления состоит из печи с рубашкой на 60 литров, четырех алюминиевых батарей по 8 секций каждая и 90 метров трубы PN25 (20 x 3.4).
Трубы стандарта PN25 20 х 3.4 наиболее часто применяют для организации небольшого отопительного контура с последовательным подключением радиаторов. Ее внутренний диаметр равен 13.2 мм
Объем жидкости в трубе нужно посчитать в литрах. Для этого в качестве единицы измерения надо взять дециметр. Формулы перехода от стандартных величин длины следующие: 1 м = 10 дм и 1 мм = 0.01 дм.
Объем рубашки котла известен. V1 = 60 л.
В паспорте алюминиевого радиатора Elegance EL 500 указано, что объем одной секции равен 0.36 л. Тогда V2 = 4 * 8 * 0.36 = 11.5 л.
Вычислим суммарный объем труб. Их внутренний диаметр d = 20 – 2 * 3.4 = 13.2 мм = 0.132 дм. Длина l = 90 м = 900 дм. Следовательно:
V3 = π * l * d2 / 4 = 3.1415926 * 900 * 0.132 * 0.132 / 4 = 12.3 дм3 = 12.3 л.
Таким образом, теперь можно найти общий объем:
V = V1 + V2 + V3 = 60 + 11.5 + 12.3 = 83.8 л.
На промышленных и сельскохозяйственных объектах часто устанавливают самодельные радиаторы отопления, устроенные по типу регистров. Зная размеры труб, можно вычислить их объем
Расчет объема самодельного радиатора
Разберем, как рассчитать классический самодельный радиатор отопления из четырех горизонтальных труб длиной 2 м. Сначала необходимо найти площадь сечения. Измерить наружный диаметр можно с торца изделия.
Пусть он будет 114 мм. Используя таблицу стандартных параметров стальных труб, найдем толщину стенки, характерной для этого размера – 4.5 мм.
Вычислим внутренний диаметр:
d = 114 – 2 * 4.5 = 105 мм.
Определим площадь сечения:
S = π * d2 / 4 = 8659 мм2.
Суммарная длина всех фрагментов равна 8 м (8000 мм). Найдем объем:
V = l * S = 8000 * 8659 = 69272000 мм3.
Объем вертикальных соединительных трубок можно вычислить аналогичным образом. Но этой величиной можно и пренебречь, так как она будет составлять менее 0.1% от общего объема радиатора отопления.
Получившееся значение неинформативно, поэтому переведем его в литры. Так как 1 дм = 100 мм, то 1 дм3 = 100 * 100 * 100 = 1000000 = 106 мм3.
Поэтому V = 69272000 / 106 = 69.3 дм3 = 69.3 л.
Поэтому так как нужно будет посчитать объем труб в м3, то и все габариты перед подстановкой их в формулу надо будет сразу переводить в метры.
Видео
Электрическое сопротивление | |
---|---|
R <displaystyle R> | |
Размерность | L 2 MT −3 I −2 (СИ); TL −1 (СГСЭ, гауссова система); LT −1 (СГСМ) |
Единицы измерения | |
СИ | Ом |
СГСЭ | статом, с/см |
СГСМ | абом, см/с |
Классическая электродинамика |
Электричество · Магнетизм |
См. также: Портал:Физика |
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему .
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
R = U I , <displaystyle R=<frac >,>
R — сопротивление, Ом; U — разность электрических потенциалов (напряжение) на концах проводника, В; I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.
Ядерная физика
Эффективное поперечное сечение широко используется в ядерной и нейтронной физике для выражения вероятности протекания определённой ядерной реакции при столкновении двух частиц.
Типичный радиус атомного ядра составляет порядка 10−14м, то есть поперечное сечение ядра — порядка 10−28м². Можно ожидать, что сечения взаимодействий частиц с ядром должны иметь примерно такую величину. Она получила своё собственное наименование — барн, — и обычно используется как единица измерения сечения ядерных реакций. Однако, на самом деле, сечения реакций могут изменяться в очень широких пределах.
Если радиус ядра больше, чем длина волны де Бройля налетающей частицы (большие энергии), то максимальное сечение определяется геометрическими размерами ядра (πR²). В области малых энергий максимальное сечение определяется, наоборот, длиной волны де Бройля. Реальные значения сечений могут быть намного меньше максимальных, они зависят от энергии налетающих частиц, типа реакции, ориентации спинов частиц и т. п.
Нейтронные сечения ядер
Сечения рассеяния (сплошные линии) и захвата (точечные) нейтрона для ядер разных элементов
Полное сечение реакции с нейтроном и сечение деления для U-235 и Pu-239
Взаимодействие ядра атома и нейтрона является краеугольным камнем ядерных технологий. Вероятность взаимодействия ядра и нейтрона именуют полным сечением. Процесс взаимодействия может происходить по нескольким схемам. Вероятность каждой конкретной схемы (ее сечение взаимодействия) зависит от состава ядра и кинетической энергии нейтрона:
- Упругое рассеяние, при котором ядро сохраняет целостность. Нейтрон и ядро изменяют свою кинетическую энергию в соответствии с законами механики. Вероятность такого сценария характеризует сечение рассеяния.
- Ядерная реакция, при которой ядро поглощает нейтрон (нейтронный захват). Ее вероятность характеризуется сечением захвата. Существует множество сценариев последствий захвата нейтрона, каждый из которых также может характеризоваться своим сечением. Например, некоторые ядра после захвата становятся нестабильны и распадаются. Такую вероятность характеризуют сечением деления.
- Неупругое рассеяние, при которой ядро разваливается под ударом нейтрона.
Элемент | нейтронное сечение, барн | |||
---|---|---|---|---|
поглощения | рассеяния | |||
тепловые нейтроны | быстрые нейтроны | тепловые нейтроны | быстрые нейтроны | |
C | 0,0034 | 0,0001 | 4,75 | 0,619 |
Na | 0,515 | 0,002 | 4 | 0,437 |
Fe | 2,55 | 0,010 | 10,9 | 0,85 |
Zr | 0,185 | 0,023 | 6,40 | 0,97 |
238U | 2,7 | 0,331 | 8,9 | 0,664 |
Первоначальные данные и вычисления
Для начала необходимо сказать о том, что сама конструкция изделий подобного типа фактически является цилиндром. Учитывая это, и следует подбирать специальные формулы, которые известны из начального курса геометрии.
Однако стоит отметить, что сортамент труб круглого сечения по ГОСТу довольно разнообразен и при работе с данными это необходимо учитывать.
Формулы
Обычно площадь круга находится с использованием формулы S= π•R 2 .
- В данном случае под литерой R подразумевают радиус самой трубы, а буква π является константой, равной числу 3.14.
- Однако такая формула площади сечения трубы позволяет получить данные с учетом самих стенок, что может пригодиться только для пробоя отверстий прохождения. Для оценки пропускной способности нужны совершенно другие расчеты.
Учитывая все особенности применяемых материалов, следует получить площадь живого сечения трубы, где во внимание принимается и толщина стенок. Выглядит такая формула так: S= π•(D/2-N) 2
В данной ситуации литера D указывает на внешний диаметр изделия, который легко измерить при помощи линейки или посмотрев в спецификацию
Буква же N означает толщину стенки трубы. Именно ее часто определяет сортамент стальных труб круглого сечения, а получить эту величину можно также из спецификации или же при помощи линейки.
Программы
В современном строительстве расчет площади трубы круглого сечения выполняют с использованием специального программного обеспечения. Обычно мастера применяют полноценные калькуляторы, позволяющие получать самые разнообразные данные, где трубам отводится целая система. Однако существуют и программы, разработанные только для получения этих данных.
Большинство таких калькуляторов разработаны для использования на любых платформах, поэтому их можно установить даже на мобильный телефон, чтобы получить возможность узнать сечение трубы для отопления прямо на месте работы, не прибегая к самостоятельному вычислению.
Стоит отметить, что подобного рода софт может разрабатываться самыми разными компаниями. Поэтому прежде чем начинать его использовать стоит убедиться, что в нем применяется метрическая система измерений. В противном случае можно получить момент сопротивления сечения трубы или другие данные в единицах, которые придется дополнительно обрабатывать.
Область использования
Прежде всего, полученные параметры применяют для того, чтобы установить расход воды в трубе круглого сечения
Это очень важно при работе с дорогими жидкостями или газами, для которых и собирается трубопровод
- Считается, что расчет количества воды по сечению трубы самый точный и при известной величине давления можно получить все самые необходимые данные про систему. Это часто используют на производстве и при создании охладительных систем.
- Если система создается своими руками в бытовых целях, то подобные параметры знать совершенно не обязательно. Однако при разветвленном водопроводе такие вычисления могут пригодиться. (См. также статью Разводка труб: особенности.)
- Стоит отметить, что не достаточно знать все необходимые данные, а нужно еще уметь их применять. Поэтому для сложных проектов стоит нанимать специалистов, хотя их цена порой довольно высока.
- Необходимо сказать о том, что в определенных случаях нужно использовать материалы со строго определенной площадью сечения. Этого требует инструкция по монтажу, основываясь на характеристиках точек потребления или необходимых конечных характеристиках всей системы. (См. также статью Система канализации: особенности.)