Как узнать ампераж

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Зачем нужно рассчитывать ток

На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.

Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.

По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:

  • Снижаются потери;
  • Уменьшается нагрев;
  • Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.

Высоковольтная опора ЛЭП

Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Как измерить силу переменного или постоянного тока

Январь 22, 2014

Многие помнят из школьной физики закон Ома: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения короткого замыкания или токов перегрузки.

Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт.

Важно

Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв.

мм, который рассчитан на максимальный ток 25 А.

Единицы измерения мощности электрического тока

Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р.

Высчитывается по формуле P = А х B, т. е.

для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт.

Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А. Но учтите, что это максимальная величина, в реальности она может быть меньше т. к.

телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

Приборы для измерения электрического тока

Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

  1. Амперметр— хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
  2. Мультиметр— это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал в этой статье.
  3. Тестер— то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
  4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение  зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250
0,75 0,98 10 3800
1,00 1,13 14 5300
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Расчет электрических цепей

Все формулы, используемые для расчётов электроцепей, вытекают одна из другой.

Взаимосвязи электрических характеристик

Так, например, по формуле расчета мощности можно произвести расчет силы тока, если известны P и U.

Чтобы узнать, какой ток будет потреблять утюг (1100 Вт), включенный в сеть 220 В, нужно выразить силу тока из формулы мощности:

I = P/U = 1100/220 = 5 A.

Зная расчётное сопротивление спирали электроплиты, можно найти P устройства. Мощность через сопротивление узнают по формуле:

P = U2/R.

Существует несколько методов, позволяющих решать поставленные задачи по расчётам различных параметров заданной цепи.

Методы расчёта электрических цепей

Расчёт мощности для цепей разного рода тока помогает правильно оценить состояние линий электропитания. Бытовые и промышленные аппараты, подобранные в соответствии с заданными параметрами Pном и S, будут работать надёжно и выдерживать максимальные нагрузки годами.

Как узнать силу тока, зная мощность и напряжения.

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Расчет мощностного показателя по амперам и ваттам.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства

Расчет электроэнергии через электромощность и электронапряжение

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Вам это будет интересно  Обозначение разного электрооборудованья на схемах

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности

Подсчет потребляемой мощности

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Что влияет на мощность тока

Добавление электрического сопротивления позволяет учесть потери в подключенной цепи (нагрузке). В формуле нахождения мощности для полной цепи учитывают параметры источника питания. Для более точного анализа следует оценить скорость потребления энергии на единицу объема проводника (ΔV).

Мощность равна формуле:

Pуд = Rуд * j2,

где:

  • Rуд – удельное сопротивление;
  • j – плотность тока соответствующего участка цепи.

Из этого выражения понятна зависимость расхода электричества от проводимости. Данное соотношение определяет требования к используемой кабельной продукции. При недостаточном сечении (высоком уровне примесей) увеличивается нагрев. Аналогичный результат получают при подключении мощной нагрузки. На определенном уровне произойдет тепловое разрушение материала.

К сведению. Этот процесс является причиной типичных аварийных ситуаций. Для предотвращения повреждений применяют специализированную технику – автоматические выключатели.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

Параллельное соединение резисторов, схемотехника и формулы для расчетов

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХL по формуле:

ХL = 2π * f * L.

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Хc = 1/ 2π * f * C.

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Пояснительная схема к расчету с двумя источниками

История открытия закона Ома для участка цепи

Вспомним, что несколько предыдущих уроков были посвящены изучению таких физических величин, как сила тока, напряжение и сопротивление. Мы рассмотрели природу возникновения электрического сопротивления, единицу его измерения и вкратце указали, от каких общих факторов оно зависит. Также мы знаем, что сила тока зависит от электрического поля, которое возникает в проводнике, а напряжение зависит от работы этого поля. Но электрический ток – это упорядоченное движение заряженных частиц, которое также характеризуется работой электрического тока. Следовательно, должна быть какая-нибудь связь между всеми этими понятиями: сила тока, напряжение, сопротивление.

Впервые определил эту зависимость в 1826 году немецкий физик Георг Ом (1789–1854) (рис. 1). Он провел очень большое количество экспериментов, в которых, прежде всего, исследовал зависимость силы тока в цепи от напряжения. Проводились его эксперименты следующим образом: ничего не меняя в электрической цепи, он подключал к ней различное большее число источников тока, в результате чего увеличивалось напряжение, подаваемое в цепь, что приводило к увеличению силы тока. Такие многочисленные эксперименты привели к получению закона силы тока от электрического сопротивления.

Опишем схему проведения экспериментов Георга Ома. В электрическую цепь он подключал проводник, на котором с помощью вольтметра и амперметра измерялись напряжение и сила тока соответственно, ключ и источник тока (рис. 2)

Обратим внимание на то, что в цепи подключено несколько источников тока, и изменение их количества позволяет пронаблюдать за изменением силы тока в цепи в зависимости от напряжения

Рис. 2. Схема экспериментов Г. Ома

В результате измерений прослеживается зависимость , где напряжение измеряется на зажимах AB, т. е. на проводнике.

Для того чтобы пронаблюдать зависимость силы тока от сопротивления, в той же цепи теперь следует не менять количество источников тока, а менять проводники, т. е. сопротивление цепи. Георг Ом поступил следующим образом: вместо одного проводника он подключил другой с вдвое большей длиной, т. е. с вдвое большим сопротивлением (почему это так, вы узнаете на следующем уроке). Аналогично он подключал и проводники с другими длинами и получил зависимость такого вида: . Т. е. при увеличении сопротивления проводника сила тока в нем уменьшается.

На графике зависимость силы тока в проводнике от сопротивления выглядит следующим образом (рис. 3).

Рис. 3. Зависимость силы тока в проводнике от сопротивления

Такая зависимость называется обратно пропорциональной. Эту зависимость Ому пришлось достаточно долго получать, но именно это и привело его к выводу важнейшего закона электродинамики – закону Ома для участка цепи. Собрав вместе те две зависимости, которые мы показали выше, Ом и пришел к своему закону.

Взаимосвязь основных величин

Самая распространенная задача, с которой сталкиваются рядовые потребители, заключаются в расчетах реально действующей силы тока. Так как же правильно рассчитать ампераж по известным значениям напряжения и мощности? Решить ее необходимо при обосновании значений сечения жил и номинала автомата, имея техническую информацию об устройствах, которые будут в эту цепь запитаны.

После вычисления силы тока часто выбирают кабеля с наименьшим допустимым сечением. Однако это не всегда правильно, так как такое решение приводит к существенным ограничениям при необходимости добавления новых электроприборов в сеть.

Иногда необходимо провести обратные вычисления и определить какой суммарной мощности можно подключить приборы при известном напряжении и максимально допустимой силе тока, которая ограничена уже существующей проводкой.

Решить эти две задачи для однофазной цепи можно с помощью простой формулы:

I = S / U;

S = U * I,

где S – суммарная полная мощность всех электропотребителей.

Круговая диаграмма, отражающая закон Ома и выражающая зависимость мощности, силы тока, напряжения и сопротивления подходит для вычисления параметров однофазной цепи

Для решения задачи расчета силы тока по известным или вычисленным значениям мощности и напряжения в трехфазной цепи надо знать суммарную нагрузку, налагаемую на каждую фазу.

И необходимое сечение жил кабеля, и минимально допустимый номинал автомата подбирают по самой загруженной линии, считая что:

S = 3 * max{S1, S2, S3}.

I = S / (U * 1.73).

Допустимую мощность для каждой из фаз можно вычислить по следующей формуле:

S1,2,3 < S / 3 = I * U / 1.73,

где I – максимально допустимая сила тока для существующей проводки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector