Защитное заземление, его цели и задачи

Принцип действия ЗУ

Ключевой принцип работы заземления заключен в том, чтобы снижать потенциал напряжения точки, которая соприкасается с токопроводящими частями, до того момента, пока это не станет безопасно для людей. Когда опасное напряжение попадает на поверхность оборудования, потенциал заземлителя, который находится ближе всего к нулю, должен быть перенесен в эту самую точку, что создает безопасные и комфортные условия для работы. По истечении времени автоматическое устройство, защищающее от утечек электричества, срабатывает. Линия питающего напряжения деактивируется, устраняя аварийную ситуацию.

Процесс изготовления заземляющих устройств требует соблюдения некоторых особых условий, которые обеспечат надежность и контакт частиц почвы с металлическими поверхностями. Повысить электропроводность можно, погрузив в грунт металлическую конструкцию заземления, а вокруг нее создать зону максимальной удельной проводимости. Добиться повышения этой проводимости можно непосредственным химическим воздействием на землю, например с помощью соли.

Все вышеперечисленные методы способны обеспечить надежное движение электричества в грунт по заземленному основанию защитных конструкций. Помимо того что обеспечивается преднамеренное слияние корпуса электрического оборудования с заземленным механизмом, представленный выше метод может быть использован в критических ситуациях замыкания фазы на почву.

Основные характеристики ЗУ

Основным показателем эффективности действия любого контура является величина сопротивления защитного заземления (Rз). Она представляет собой сумму переходных сопротивлений всех элементов конструкции ЗУ, включая контакты заземлителя с грунтом и подводящими шинами (проводниками).

Для практического определения величины этого показателя можно воспользоваться известным из школьной программы законом Ома. Согласно ему, Rз вычисляется как отношение напряжения в точке подключения медного отводящего проводника к корпусу защищаемого устройства к протекающему по всей заземляющей цепочке аварийному току.

Из этого определения следует, что для повышения эффективности действия любой заземляющей конструкции необходимо свести к минимуму сопротивление стеканию тока в почву.

Рассматриваемый нами показатель (величина Rз) в значительной мере зависит от следующих параметров:

  • Сопротивление грунта в месте растекания аварийного тока;
  • Конструкция заземлителя и его типоразмер;
  • Характеристики заземляющего устройства, определяемые взаимным расположением его элементов.

Помимо этого, данный показатель непостоянен во времени и изменяет свою величину в зависимости от сезона. Так, наибольшего значения он достигает при сильном промерзании грунта зимой или в засушливую летнюю пору. Нормированная ПУЭ величина переходного сопротивления для большинства промышленных и жилых объектов, включая загородные дома и дачные подсобные строения, не должна превышать 4 Ом (смотрите таблицу ниже).

Нормы по сопротивлению Rз

Дополнительная информация. Для ряда специально оговоренных в ПУЭ случаев максимально допустимые значения этого показателя должны соответствовать приведённым в таблице данным.

Исходя из этого, в технической документации оговаривается допустимое значение для напряжения прикосновения, не превышающее показатель в 40 Вольт.

В заключение – несколько слов о том, как можно снизить сопротивление ЗУ в обычных условиях эксплуатации этих конструкций. Специалисты советуют выбирать под их размещение влажные суглинистые почвы с большим содержанием солей. При невозможности подобрать подходящее для контура место следует искусственно повышать его проводимость за счёт добавлении минеральных солей в жидком растворе.

Проводник

Особых требований к проводящему контуру (от электроустановки до контура) нет. Самое главное – это прочность металлического элемента, который способен выдержать и механические нагрузки, и негативное воздействие влаги и температур. Поэтому чаще всего в качестве проводника используются стальные ленты толщиною не меньше 5 мм, тросы сечением не меньше 12 мм, арматура диаметром 10-12 мм.

Что касается частного домостроения, то в них можно использовать даже проволоку диаметром 6 мм ввиду того, что электрические нагрузки на такой проводник будут незначительны. Но¸ как считают специалисты, в этом деле лучше перестраховаться. Поэтому рекомендуется использовать стальную ленту сечением 5×30 мм.

Схемы защитного зануления

Существует несколько схем, по которым выполняется защитное зануление.

Достаточно простая система, по которой выполняется защитное зануление. В ней нулевой проводник N и защитный проводник PE по всей длине объединены в один общий проводник PEN. Для реализации защитного зануления по системе TN-C необходимо соблюдать очень высокие требования к системе уравнивания потенциалов, а также к размеру поперечного сечения совмещённого PEN-проводника.

Зануление по системе TN-C применяется в трёхфазных электрических сетях, а в однофазных сетях такое зануление категорически запрещено.

Данная система представляет собой соединённые N и PE проводники в части сети, начиная от электрического источника питания. По данной системе допускается зануление электрооборудования в однофазных сетях.

Область применения защитного зануления

Защитное зануление применяется в однофазных и трёхфазных сетях переменного тока до 1кВ. Сеть должна быть с глухозаземлённой нейтралью.

Проверка эффективности защитного зануления

Суть защитного зануления заключается в том, чтобы в случае короткого замыкания фазы на корпус электрооборудования произошло автоматическое отключение повреждённого участка цепи. Для того чтобы проверить на сколько эффективно выполнено защитное зануление, необходимо измерить сопротивление петли фаза-ноль в самой удалённой от источника питания точке. Это позволит определить, сработает ли аппарат защиты в случае однофазного к.з. на корпус.

Сопротивление петли фаза-ноль измеряется при помощи специальных измерительных приборов. Приборы для измерения петли фаза-ноль имеют два щупа. При измерении один щуп подключается к действующей фазе, а второй – к занулённой части электрооборудования.

В результате замера выясняется значение сопротивления петли фаза-ноль. Зная величину измеренного сопротивления и значение питающего напряжения, по формуле закона Ома для участка цепи можно рассчитать ток однофазного короткого замыкания, расчётное значение которого должно быть больше (или равно) тока срабатывания защитного устройства.

Допустим, для защиты цепи от токовых перегрузок и от коротких замыканий установлен автоматический выключатель, ток мгновенного срабатывания которого равен 100А. Измеренное значение сопротивления петли фаза-ноль равно 2 Ом, фазное напряжение в сети равно стандартному значению 220В.

Рассчитываем значение тока однофазного короткого замыкания. По закону Ома I = U/R = 220В/2Ом = 110А.

Т.к. расчётный ток к.з. больше чем ток мгновенного срабатывания (отсечки) автоматического выключателя, то защитное зануление будет эффективным. Если бы расчетный ток к.з. получился меньше тока мгновенного срабатывания автомата, то для эффективности защитного зануления пришлось бы или менять автоматический выключатель на устройство с меньшим током срабатывания, или искать решение по уменьшению сопротивления петли фаза-ноль.

Очень часто в расчётах ток срабатывания автоматического выключателя умножается на так называемый коэффициент надёжности Кн или коэффициент запаса. Дело в том, что отсечка автомата не всегда соответствует указанному значению, т.е. может быть некоторая погрешность, для этого и вводится в расчёты указанный коэффициент. Для старых автоматов Кн может равняться, например, 1,25 или 1,4. Для новых современных автоматов он может быть равен 1,1. Это связано с тем, что новые аппараты защиты работают более точно.

Испытания

Для подтверждения соответствия требованиям ГОСТ, переносные заземления подвергаются нижеследующим видам испытаний:

  • приёмосдаточным (при первичной проверке на соответствие установленным стандартам);
  • периодическим (допустимо проводить один раз в пять лет);
  • типовым (при конструктивных изменениях).

Переносные заземления считаются пригодными к применению, при успешном прохождении нижеследующих мероприятий:

1. Визуальный осмотр целостности всех элементов конструкции.

Включает в себя проверку струбцин, жил проводника, изолирующей штанги, ограничительного кольца на штанге, антикоррозийного покрытия, защитной изоляции и технической документации.

2. Климатические испытания.

Процедура проводится при отрицательной и положительной температуре. Её значение должно достигать сорока пяти градусов Цельсия, соответственно до и выше нуля. Переносное заземление подвергается двух часовому воздействию температуры. При отсутствии следов разрушения защитной изоляции и пластмассовых элементов, изделие считается пригодным для применения.

3. Определение механической прочности штанг.

Данный опыт предназначен для измерения изгиба штанги ПЗ. Допустимым отклонением прогиба является десяти процентная величина по отношению к изоляционной длине штанги, используемой для электроустановок напряжением до 220 кВ. Для более высоких уровней напряжения, допускается двадцати процентное отклонение.

Для проведения испытания, штангу фиксируют в горизонтальной плоскости. Закрепляя конец штанги и место посадки ограничительного кольца. Металлической линейкой устанавливается уровень оси штанги. И по ней же, отсчитывается величина прогиба.

4. Проверка сечения жил.

Для установления действительного сечения переносного заземления, выполняют его разборку на стренги. Фиксируют их количество, и считают число проводников в одной стренге. Измеряют диаметр проводника для определения его сечения. Полученную расчётную величину умножают на число проводников в стренге и на количество стренг.

5. Измерение термической и динамической стойкости.

Опыт заключается в пропускании через готовое изделие соответствующего значения тока короткого замыкания, от лабораторных источников тока. Протекание тока продолжается до момента полного разрушения опытного образца. Если в течение трёх секунд не наблюдалось механических повреждений или сбрасываний жил с мест установки, то образец удовлетворяет термической и динамической стойкости.

6. Определение уровня переходного сопротивления.

Микроомметром выполняется замер сопротивления в месте присоединения проводников к струбцине. Данный показатель не должен превышать значения в 600 мкОм.

7. Электрические проверки изолирующих элементов.

Изолирующие части переносного заземления подвергаются высоковольтным испытаниям.

Во время эксплуатации механические испытания заземляющих проводов не производятся. Электрическим испытаниям подлежат штанги с металлическими элементами. Данная процедура выполняется раз в два года.

Изъятие изделия из эксплуатации осуществляется при обнаружении нижеследующих изъянов:

  • нарушение соединения между струбциной и проводником;
  • следы расплавления металла или разрушения заземляющих проводников;
  • наличие более пяти процентного обрыва жил проводника.

Защитное заземление в электроустановках. Назначение, принцип действия, область применения.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т.п.).

Защитное заземление предназначено для устранения опасности поражения электрическим током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Область применения защитного заземления – электроустановки по напряжением до 1000 В в сетях с изолированной централью и выше 1000В в сетях с любым режимом нейтрали источника тока (как с изолированной, так и с глухозаземленной).

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

при номинальном напряжении 380В и выше переменного тока и 440В и выше постоянного тока во всех случаях;

при номинальных напряжениях от 42В до 380В переменного и от 110В до 440В постоянного тока при работах в условиях с повышенной опасностью, особо опасных и наружных установках.

Примечание: Характеристики этих условий приведены в обязательном приложении к ГОСТ 12.1.013-78 .

Защитному заземлению подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок и т.д.

Принцип действия защитного заземления в электроустановках напряжением до 1000В:

снижение напряжения прикосновения на заземленном корпусе при замыкание на него питающего напряжения.

Это достигается за счет малого сопротивления заземляющего устройства (Ом). Ток течет по пути наименьшего сопротивления, а т.к. сопротивление человека (кОм), то он пойдет в заземлитель или его эквивалент.

Принципиальная схема защитного заземления приведена на рис.:

(а) – трехфазной сети; (б) – двухпроводных сетей переменного и (в) – постоянного тока.

Примечание: предельно допустимые значения напряжений прикосновения и токов через тело человека с учетом длительности воздействия приведены в ГОСТ 12.1.038-82 .

Заземление осуществляется с помощью специальных устройств – заземлителей – это совокупность заземлителя – металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 20.4).

Контурное заземляющее устройство (рис. 20.5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее

Заземлители бывают одиночные и групповые, исскуственные и естественные.

Груповой заземлитель состоит из вертикальных стержней и соединяющей их горизонтальной полосы.

В качестве естественных заземлителей используют:

– проложенный в земле водопровод;

– обсадные трубы скважен (металлические);

– свинцовые оболочки кабелей, проложенных в земле;

– другие металлоконструкции, расположенные в грунте.

Общее сопротивление заземляющего устройства состоит из сопротивления естественных и искусственных заземлителей:

где – требуемое (допустимое) значение сопротивления заземляющего устройства.

Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать 4 Ом

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция — обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Принцип действия защитного заземления

Основной принцип действия состоит в том, чтобы уменьшить количество напряжения на корпусе электрического оборудования при включении его в электросеть. Достижением этого служит малое сопротивление заземляющей конструкции. Ток проходит по наименьшему сопротивлению, то есть сопротивление заземлителя должно быть меньше чем сопротивление человека.

Различают контурные и выносные заземляющие конструкции. Контурные устройства проходят по периметру заземляемого объекта или оборудования. Такая конструкция более надежная и дает гарантию повышенной безопасности. Выносные – располагаются за границей предполагаемого объекта или электроустановки.

Принцип действия можно рассмотреть когда заземление является частью молниезащиты. При возникновении молнии разряд проходит по наименьшему сопротивлению: от воздуха к деревьям, к мокрым стенам зданий, по проводам к электроприборам и так далее. Если имеется такое устройство как молниезащита, то разряд от облака пойдет по траектории расположения металлических молниеотводах, находящихся с наружной стороны стен здания.

Электропроводность металла обусловлена содержанием в нем электронов, находящихся в подвижном состоянии. После чего электрический разряд по стенам спускается в почву, где и распадается. В этом случае заземление играет роль обязательного элемента, так как разряд посредством его уходит в землю. Земля является отличным проводником, но необходимо учитывать удельное сопротивление земли. Этот показатель зависит от плотности, состава, влажности и температуры, а также находящихся в ней химических элементов.

Так, мокрая глина является хорошим проводником для тока, в отличие от сухого песка. Также глубина заземлителя влияет на данный показатель. Заземление, проходящее на глубине более 5 метров, является более эффективным и надежным.

Специалисты проводят расчеты для проектирования качественной заземляющей конструкции. Как правило, выбираются типовые схемы и формулы для расчета. Вычисления зависят от: величины электродов и их количества, показателей грунта заземляемого объекта. Верность расчетов не большая, так как в большинстве случаев зависит от почвы. Обычно в этом случае используется опыт инженера.

Требования к заземлению и занулению

Заземление – более серьезная защитная мера, чем зануление. Для этой схемы требуется создание отдельной шины с малым сопротивлением, которая соединяется с заземлителем вкопанным в грунт и обустроенным в соответствии со стандартами. Все требования к заземлению, его элементам и обустройству прописаны в ПЭУ и ГОСТе 12.2.007.0.

Установки с изолированной нейтралью

В промышленном секторе заземлению подлежат:

  • электроприводы;
  • корпуса электрооборудования;
  • металлоконструкции зданий;
  • экранированная оплетка низковольтных электрокабелей;
  • корпуса распределительных электрощитов и аналогичных конструкций.

К занулению предъявляются более лояльные требования, а именно:

  • нулевые и фазные проводники выбираются таким образом, чтобы при пробое на корпус оборудования возникал ток достаточный для срабатывания УЗО или другого защитного механизма;
  • проводник зануления от прибора до заземленной нейтрали должен быть непрерывным, то есть не содержать в цепи каких-либо коммутационных устройств.

Что такое заземление, принцип действия и устройство

При создании электросети, в помещениях различного назначения, требуется создание защиты, которая предотвратит вероятное поражение током. Чтобы избежать этого выполняется устройство заземления. В соответствии с ПЭУ п.1.7.53 заземление выполняется в электрооборудовании с напряжением более 50 В переменного и 120 В постоянного тока.

Шина заземления от ГРЩ к потребителю

Заземление – намеренное соединение нетоковедущих металлических частей электроустановок (которые могут оказаться под напряжением) с землей или ее эквивалентом. Данная защитная мера предназначена для исключения вероятности поражения человека электротоком при замыкании на корпус оборудования.

Принцип действия

Принцип работы защитного заземления заключается в:

  • снижении разности потенциалов, между заземляемым элементом и другими токопроводящими предметами с естественным заземлением, до безопасного значения;
  • отвод тока в случае непосредственного контакта заземляемого оборудования с фазным проводом. В грамотно спроектированной электросети возникновение тока утечки вызывает мгновенное срабатывание устройства защитного отключения (УЗО).

Схемы заземления в трехфазных сетях

Из вышесказанного следует, что заземление имеет большую эффективность при использовании в комплексе с УЗО.

Устройство заземления

Конструкция системы заземления состоит из заземлителя (проводящая часть, которая имеет непосредственный контакт с землей) и проводника, обеспечивающего контакт между заземлителем и нетоковедущими элементами электрооборудования. Обычно в качестве заземлителя используется стальной или медный (очень редко) стержень, в промышленности это как правило, сложная система, состоящая из нескольких элементов специальной формы.

Эффективность системы заземления во многом определяется величиной сопротивления защитного устройства, которую можно уменьшить, повышая полезную площадь заземлителей или увеличивая проводимость среды, для чего задействуется несколько стержней, повышается уровень солей в земле и т.п.

Заземляющее устройство это…

Выше мы рассмотрели в общих чертах, что такое защитное заземление. Однако стоит упомянуть, что используемые в системе заземлители различаются на естественные и искусственные.

В качестве устройств заземления в первую очередь предпочтительнее использовать такие естественные заземлители, как:

  • трубы водоснабжения, находящиеся в грунте;
  • металлоконструкции зданий и сооружений, имеющие надежный контакт с землей;
  • обсадные трубы артезианских скважин;
  • металлические оболочки кабелей (исключение составляет алюминий).

Вариант использования трубы в качестве естественного заземлителя

Естественные заземлители должны иметь соединение с защитной системой из двух и более разных точек.

В роли искусственного заземлителя может использоваться:

  • стальная труба с толщиной стенок 3,5 мм и диаметром 30÷50 мм и длиной порядка 2÷3 м;
  • стальные полосы и уголки толщиной от 4 мм;
  • стальные пруты длиной до 10 и более метров и диаметром от 10 мм.

Использование металлических полос в качестве искусственного заземлителя

Для агрессивных почв необходимо использование искусственных заземлителей с высокой устойчивостью к коррозии и изготовленных из меди, оцинкованного или омедненного металла. Итак, мы разобрались с тем, что является определением понятия искусственного и естественного заземлителя, теперь же рассмотрим, когда применяется заземление.

Предлагаемое видео наглядно объясняет, что такое защитное заземление:

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Техническая проверка систем заземления

Для того чтобы контролировать текущее состояние механизма, необходимо время от времени проверять его конструкцию и то, соответствуют ли его характеристики установленным требованиям к заземляющим устройствам. Процедура проверки должна включать в себя следующие действия:

  • визуально осмотреть открытые участки механизма;
  • тщательно обследовать контакты между отдельными частями контурного заземления;
  • измерить активное сопротивление;
  • выборочно обследовать части, которые размещены в земле, вскрыть почву в этих местах.

При возникновении необходимости во время проведения испытаний специалисты могут измерить параметры распределяющей заземляющей цепи и напряжение прикосновения. Комплект должен обязательно содержать технический паспорт заземляющего устройства с информацией о дате начала эксплуатации ЗУ, его рабочую схему и информацию с текущим состоянием системы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector